KSEEB Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.1

KSEEB Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.1 are part of KSEEB Solutions for Class 9 Maths. Here we have given Karnataka Board Class 9 Maths Chapter 1 Number Systems Exercise 1.1.

Karnataka Board Class 9 Maths Chapter 1 Number Systems Ex 1.1

Question 1.
Is a zero a rational number? Can you write it in the form \(\frac{p}{q}\), where p and q are integers and q ≠ 0 ? (p, q,ϵ Z, q ≠ 0)
Answer:
Zero is a rational number.
This can be written in the form of \(\frac{p}{q}\) because \(\frac{o}{q}\) is a rational number.
E.g. \(\frac{0}{2}=0, \quad \frac{0}{5}=0\). etc.
Zero belongs to set of rational number.

Question 2.
Find six rational numbers between 3 and 4.
Answer:
We can write six rational numbers between 3 and 4 as
\(3=\frac{21}{7} \text { and } 4=\frac{28}{7}\)
∴ rational numbers between \(\frac{21}{7}\) and \(\frac{28}{7}\).
KSEEB Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.1 1

Question 3.
Find five rational numbers between \(\frac{3}{5}\) and \(\frac{4}{5}\)
Answer:
Rational numbers between \(\frac{3}{5}\) and \(\frac{4}{5}\) are
KSEEB Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.1 2
∴ Rational numbers between \(\frac{30}{50}\) and \(\frac{40}{50}\)
KSEEB Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.1 3

Question 4.
State whether the following statements are true or false. Give reasons for your answers :
(i) Every natural number is a whole number.
Answer:
True. Because set of natural numbers belongs to a set of whole numbers.
∴ W = {0, 1, 2, 3 …………………….}

(ii) Every integer is a whole number.
Answer:
False. Because zero belongs to a set of integers. But -2, -3, -1 are not whole numbers.

(iii) Every rational number is a whole number.
Answer:
False. Because \(\frac{1}{2}\) is a rational number but not a whole number.

We hope the KSEEB Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.1 help you. If you have any query regarding Karnataka Board Class 9 Maths Chapter 1 Number Systems Exercise 1.1, drop a comment below and we will get back to you at the earliest.

Leave a Comment