2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2

Students can Download Basic Maths Exercise 14.2 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2

Part – A & B

2nd PUC Basic Maths Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 One or Two Marks Questions and Answers

Question 1.
If sin A = \(\frac { 1 }{ 2 }\) find sin 2A
Answer:
Given sin A = \(\frac { 1 }{ 2 }\) ⇒ cos A = \(\frac{\sqrt{3}}{2}\) sin2A
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 1

Question 2.
If cos A = \(\frac{\sqrt{3}}{2}\) find cos 2A
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 2

KSEEB Solutions

Question 3.
If tan A = \(\frac{1}{\sqrt{3}}\) find tan 2A
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 3

Question 4.
If sin A = \(\frac { 3 }{ 5 }\) find sin 3A
Answer:
Given sin A = \(\frac { 3 }{ 5 }\) sin3A = 3sinA – 4sin3A = \(3 \cdot \frac{3}{5}-4\left(\frac{3}{5}\right)^{3}\)
\(=\frac{9}{5}-4 \cdot \frac{27}{125}=\frac{225-108}{125}=\frac{117}{125}\)

Question 5.
If cos A = \(\frac { 4 }{ 5 }\) 4 find cos 3A
Answer:
Given cos A = \(\frac { 4 }{ 5 }\)
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 4

Question 6.
If tan A = \(\frac { 3 }{ 4 }\) find tan 3A
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 5

KSEEB Solutions

Question 7.
Find the value of 3 sin 10° – 4 sin310°
Answer:
3sin10° – 4sin310° is of the form 3 sin A – 4sin3A = sin3A = sin 3-10° = sin 30° = \(\frac { 1 }{ 2 }\)

Question 8.
If cot A = \(\frac { 12 }{ 5 }\) and A is acute find sin3A
Answer:
Given cot A = \(\frac { 12 }{ 5 }\) ⇒ sin A = \(\frac { 5 }{ 13 }\) cosA = \(\frac { 12 }{ 13 }\)
∴ sin 3A = 3sinA – 4 sin3A
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 6

Question 9.
Show that tan A = \(\frac{\tan (A-B)+\tan B}{1-\tan (A-B) \tan B}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 7

Question 10.
Prove that \(\frac{\cos 2 A}{1+\sin 2 A}=\frac{\cos A-\sin A}{\cos A+\sin A}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 8

KSEEB Solutions

Question 11.
Prove that \(\frac{1+\sin 2 \theta}{\cos 2 \theta}=\frac{1+\tan \theta}{1-\tan \theta}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 9

Question 12.
Prove that \(\frac{\sin A+\sin 2 A}{1+\cos A+\cos 2 A}=\tan A\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 10

Question 13.
Prove that \(\frac{\sin 2 \theta}{1+\cos 2 \theta}=\tan \theta\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 11

Question 14.
Prove that (sin A – cos A)2 = 1 – sin 2A
Answer:
L.H.S (sinA – cosA)2
= sin2A + cos2A – 2sinA cosA
= 1 – sin2A = R.H.S.

KSEEB Solutions

Question 15.
Prove that cos4θ – sin4θ = 2 cos2θ – 1
Answer:
L.H.S. cos4θ – sin4θ
= (cos2θ)2 – (sin2θ)2
= (cos2θ + sin2θ) (cos2θ – sin2θ)
= 1 . (cos2θ – (1 – cos2θ)
= cos2θ – 1 + cos2θ = 2cos2θ – 1 = R.H.S.

Question 16.
Prove that \(\frac{\cos ^{3} A-\sin ^{3} A}{\cos A-\sin A}=1+\frac{1}{2} \sin 2 A\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 12

Part – C

2nd PUC Basic Maths Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2Five Marks Question and Answers

Prove the following

Question 1.
\(\frac{1+\cos 2 A+\sin 2 A}{1-\cos 2 A+\sin 2 A}=\cot A\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 13

Question 2.
\(\frac{\cos 3 A}{2 \cos 2 A-1}=\cos A\) and hence find cos 15°
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 14

KSEEB Solutions

Question 3.
\(\frac{1-\cos 2 A+\sin 2 A}{1+\cos 2 A+\sin 2 A}=\tan A\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 15

Question 4.
cos6A+ sin6A = 1 – \(\frac { 3 }{ 4 }\) sin3(2A)
Answer:
cos6A+ sin6A [∵ a3 + b3 = (a + b)3 – 3ab(a+b)]
= (cos2A)3 + (sin2A)3
= (cos2A + sin2A)3 – 3cos2A – sin2A(cos3A + sin3A)
= 13 – 3cos2A · sin2A.1
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 16

Question 5.
Provfe that \(\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 17

Question 6.
sec (45° + A) · sec(45° – A) = 2 sec 2A
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 18

KSEEB Solutions

Question 7.
\(\frac{\cot A}{\cot A-\cot 3 A}+\frac{\tan A}{\tan A-\tan 3 A}=1\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 19

Question 8.
Prove that \(\frac{\cos 2 A}{1+\sin 2 A}\) = tan(45° – A)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 20

Question 9.
If tan α = \(\frac { 1 }{ 3 }\), tan β = \(\frac { 1 }{ 7 }\) P.T. tan(2α + β) = 45°.
Answer:
L.H.S = tan(2α + β)
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 21
tan(2α + β) = 1 = tan 45° = R.H.S.

KSEEB Solutions

Question 10.
If tan2(45° + θ) = \(\frac { a }{ b }\) prove that \(\frac{b-a}{b+a}\) = – sin 2θ
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 22

Question 11.
Prove that tan 2θ – tanθ = tan θ . sec 2θ.
Answer:
L.H.S = tan2θ – tanθ
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 23

KSEEB Solutions

Question 12.
Prove that cos 2α – tan α = \(\frac{\cos 3 \alpha}{\cos \alpha \cdot \sin 2 \alpha}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.2 - 24

error: Content is protected !!