2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5

Students can Download Maths Chapter 6 Application of Derivatives Ex 6.5 Questions and Answers, Notes Pdf, 2nd PUC Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5

2nd PUC Maths Application of Derivatives NCERT Text Book Questions and Answers Ex 6.5

Question 1.
Find the maximum and minimum values, if any, of the following functions given by

(i) f(x) = (2x – 1)2 + 3
Answer:
f (x) = (2x – 1)2 + 3
For all values of x, f (x) > 3 (2x – 1)2 + 3 > 3
∴ minimum value is 3 when 2x -1 = 0 is x = \(\frac{1}{2}\) however the function has no maximum values as f (x) → ∞ as |x| ∞

(ii) f (x) = 9x2 + 12x + 2
Answer:
f (x) = 9x2 + 12x + 2
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.1

KSEEB Solutions

(iii) f (x) = – (x – 1)2 + 10
Answer:
f (x) = – (x – 1)2 + 10
f(x)= 10 – (x – 1)2
10 – (x – 1)2 < 10
f(x) has a maximum value when x – 1 = 0,x= 1.
how ever f (x) has no minimum value.

(iv) g(x) = x3 + 1
Answer:
g(x) = x3 + 1 as x → ∞ g (x) → ∞ and a
s -+ – ∞, g (x) ⇒ – ∞
∴ g (x) has neither minimum value nor maximum value.

Question 2.
Find the maximum and minimum values, if any, of the following functions given by

(i) f (x) = |x + 2| – 1
Answer:
f (x) = |x + 2| – 1
f (x) = |x + 2| – 1 ≥ -1
minimum value is – 1 when x + 2 = 0, x = -2
however it has no maximum value.

(ii) g(x) = – | x + 1| + 3
Answer:
g(x) = – | x + 1| + 3 = 3,-1 x + 1|
g (x) < 3 v x + 1 = 0
∴ max. value is 3
when x = – 1
how ever no minimum value.

(iii) h(x) = sin (2x) + 5
Answer:
h(x) = sin (2x) + 5
maximum value of sin 2x = 1 and minimum value is -1
f(x) = 1 + 5 is 1 + 5
∴ max. h (x) = 6 and
min. h (x) = 4.

(iv) f (x) = |sin 4x + 3|
Answer:
f (x) = |sin 4x + 3|
-1 < sin 4x < 1 ⇒ 3 -1 < sin 4x + 3 < + 1 + 3 + 2′< sin 4 x + 3 < 4
2 < | sin 4x + 3 | < 4
f (x) > 2 and f (x) < 4
min. f (x) = 2 when sin 4x + 3 = 0
max f (x) = 4 when sin 4x + 3 = 0
∴ minimum value is 2 at sin 4x = -1
maximum value is 4 at sin 4x = 1

KSEEB Solutions

(v) h(x) = x + 1, x ∈ (- 1, 1)
Ans:
h(x) = x + 1, x ∈ (-1,1)
given that x ∈ (-1, 1)
ie. -1 < x < 1
-1 + 1< x + 1 < 1 + 10 < x + 1< 2
∴ x + 1 > 0 or x + 1 < 2
x + 1 > 0 so no minimum value
x + 1 < 2, so no maximum value.

Question 3.
Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
(i) f (x) = x2
Answer:
f (x) = x2
f’ (x) = 2x, f’ (x) = 0
⇒ 2x = 0, x = 0
f'(x)= 2
f'(x)> 0, hence f (x) has minimum value at x = 0
and the minimum value is (0)2= 0.

(ii) g(x) = x3 – 3x
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.2

(iii) h(x) = sin x + cos x, o < x< \(\frac{\pi}{2}\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.3

KSEEB Solutions

(iv) f (x) = sin x – cos x, 0 < x < 2π
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.4
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.5
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.6

(v) f (x) = x3 – 6x2 + 9x + 15
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.7

KSEEB Solutions

(vi) \(g(x)=\frac{x}{2}+\frac{2}{x}, x>0\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.8

(vii) \(g(x)=\frac{1}{x^{2}+2}\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.9

(viii) \(f(x)=x \sqrt{1-x}, x>0\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.10
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.11

Question 4.
Prove that the following functions do not have maxima or minima :

(i) f (x) = ex
Answer:
f (x) = ex
f’ (x) = ex
f'(x) > 0 ∀ x ∈ R
hence function has no critical point There is no point at which the function is maximum or minimum.

KSEEB Solutions

(ii) g(x) = log x, x > 0
Answer:
g (x) = log x, x > 0
g'(x) = \(\frac{1}{x}\), where x > 0
hence the function has no critical point
∴ There is no point at which the function is maximum or minimum.

(iii) h (x) = x3 + x1 + x +1
Answer:
h (x) = x3+ x2+ x +1
h’ (x) = 3x2 + 2x + 1
h’ (x) = 0 ⇒ 3x2 + 2x + 1 = 0,
x has no real value, hence there is no critical point.
∴ For no point the function has max. or min. value.

Question 5.
Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:

(i) f(x) = x3,x ∈ [-2,2]
Answer:
f (x) = x3,x ∈ [- 2,2]
f’ (x) = 0 ⇒ 3x2 = 0 ⇒ x = 0 for finding the absolute maximum and absolute minimum, we have to evaluate f (0), f (2), f (-2)
F (0) = (0)3 = 0, F (2) = (2)3 = 8,
F (-2) = (-2)3 = – 8
Absolute maximum = 8 and
Absolute minimum = -8
∴ maximum at 2 is 8 and minimum at -2 is – 8.

KSEEB Solutions

(ii) f (x) = sin x + cos x , x ∈ [0, π]
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.12

(iii) \(f(x)=4 x-\frac{1}{2} x^{2}, x \in[-2,9 / 2]\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.13

KSEEB Solutions

(iv) f (x) = (x – 1)2 + 3, x ∈ [-3,1]
Answer:
f (x) = (x – 1)2 + 3, x ∈ [-3,1]
f'(x) = 2 (x – 1)
f’ (x) = 0 ⇒ (x – 1) = 0
⇒ x = 1 we will evaluate f (-3) and f (1)
f(-3) = (-3 – 1)2 + 3= 16 + 3 = 19
f (1) = (0)2 + 3 = 3
Absolute maximum at x = -3 is 19 and
Absolute minimum x = 1 is 3.

Question 6.
Find the maximum profit that a company can make, if the profit function is given by
p(x) = 41+24x – 18x2
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.14

Question 7.
Find both the maximum value and the minimum value of
3x4 – 8x3 + 12x2 – 48x + 25 on the interval [0, 3].
Answer:
f (x) = 3x4 – 8x3 + 12x2 – 48 x + 25
f’ (x) = 12x3 – 24x2 + 24x – 48
f‘(x) = 0 ⇒ 12 (x3 – 2x2 + 2x -4) = 0
⇒ 12 (x2 (x – 2) + 2 (x – 2))
⇒ 12 ( (x – 2) (x2 + 2) ) = 0 (x – 2)(x2 + 2) = 0
⇒ x = 2 but x2 + 2 ≠ 0
The points are f (0), f (2), f (3)
f (x) = 3x4 – 8x3 + 12x2 – 48x + 25
f (0) = 25
f (2) = 3 (16) – 8 (8) + 12 (4) – 48 (2) + 25 = 48 – 64 + 48 – 96 + 25 = -39
f(3) = 3 (34) – 8 (33) + 12 (32) – 48 (3) + 25 = 243 – 216 + 108 – 144 + 25
376 – 360 = 16
∴ maximum of f (x) at x = 0 is 25
minimum of f (x) at x = 2 is – 39.

KSEEB Solutions

Question 8.
At what points in the interval [0,2π] does the function sin 2x attain its maximum value?
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.15

Question 9.
What is the maximum value of the function sin x + cos x on \(\left[0, \frac{2}{\pi}\right]\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.16
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.17

Question 10.
Find the maximum value of 2x3 – 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [-3, -1]
Answer:
f (x) = 2x3 – 24x +107
f’ (x) = 6x2 – 24 ⇒ x2 = 4, x = ± 2 + 2 s [1,3]
∴ we have to evaluate
f (1). f (2), f (3)
f (1) = 2 (1)3 – 24 x 1 + 107 = 85
f (2) = 2 (2)3– 24 x 2+ 107 = 75
f(3) = 2(3)3-24 x 3 + 107 = 89
maximum at x = 3 and miximum value is 89 minimum at x = 2, is 75
Now the interval is [-3, -1]
∴ points are -3, -2, -1
f (-3) = 2 (-3)3 – 24 (-3) + 107 = 125
f (-2) = 2 (-2)3 – 24 (-2) + 107
= 2 (-8+ 48 + 107 = 139 = 139
f (-1) = 2 (-1) 3-24 (-1) + 107 = 129
maximum at -2 is 139
minimum at (-3) is 125.

KSEEB Solutions

Question 11.
It is given that at x = 1, the function x4 – 62x2 + ax + 9 attains its maximum value, on the interval [0,2]. Find the value of a.
Answer:
f (x) = x4 – 62x2 + ax + 9
f'(x) = 4x3 – 124x + a
at x = 1, the function has maximum value
∴ f'(1) = 0 ⇒ 4 (1)2 -124 (1) + a = 0, a = 120
∴ when a = 120, the function attains maximum value.

Question 12.
Find the maximum and minimum values of x + sin 2x on [0,2π]
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.18

Question 13.
Find two numbers whose sum is 24 and whose product is as large as possible.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.19

KSEEB Solutions

Question 14.
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Answer:
x + y = 60 ⇒ y = 60 – x
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.20
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.21

Question 15.
Find two positive numbers x and y such that their sum is 35 and the product x2 y5 is a maximum.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.22
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.23

KSEEB Solutions

Question 16.
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.24

Question 17.
A square piece of tin of side 18 cm ¡s to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.25
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.26
x = 9 is not possible, it so side = 0
volume is maximum when the sides are 12,12,3
volume =12 x 12 x 3 = 432 cm3
The volume is maximum when the side of the square to be cut off is 3cm.

Question 18.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?
Answer:
The sides of the box are x, 45 – 24, 45 – 2x
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.27
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.28

KSEEB Solutions

Question 19.
Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
Answer:
Let the sides of rectangle be x and y and radius of the circle is r
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.29
hence rectangle becomes square.
∴ The area is maximum when the rectangle is a square.

Question 20.
Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.30

Question 21.
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.31
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.32

KSEEB Solutions

Question 22.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.33
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.34

KSEEB Solutions

Question 23.
Prove that the volume of the largest cone that can be inscribed in a sphere of radius
R is \(\frac{8}{27} \)of the volume of the sphere.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.35
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.36

Question 24.
Show that the right circular cone of least curved surface and given volume has an altitude equal to \(\sqrt{2}\) time the radius of the base.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.37
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.38
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.39

Question 25.
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is \(\tan ^{-1} \sqrt{2}\).
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.40
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.41

KSEEB Solutions

Question 26.
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is \(\sin ^{-1}\left(\frac{1}{3}\right)\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.42
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.43

Choose the correct answer in the Exercises 27 and 29.

Question 27.
The point on the curve x2 = 2y which is nearest to the point (0, 5) is
(A) (2,\(\sqrt{2}\),4)
(B) (2, \(\sqrt{2}\), 0)
(C) (0,0)
(D) (2,2)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.44
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.45

KSEEB Solutions

Question 28.
For all real values of x, the minimum value of \(\frac{1-x+x^{2}}{1+x+x^{2}}\) is
(A) 0
(B) 1
(C) 3
(D) 1/3
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.46

Question 29.
The maximum value of [x(x – 1) + 1]1/3< x < 1 is 0 ≤ x ≤ 1 is
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.47
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.5.48

2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.2

Students can Download Basic Maths Exercise 19.2 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.2

Part-A

2nd PUC Basic Maths Application of Derivatives Ex 19.1 Two of Three Marks Questions and Answers.

Question 1.
Find whether the following functions are increasing or decreasing or neither.
(i) f(x) = x4 – 8x3 + 22x2 – 24x + 5 at x = 0, -2
(ii) f(x) = 4x3 – 15x2 + 12x – 2 at x = 1,-1
(iii) f(x) = (x – 1)(x – 2)2 at x = 1,3.
Answer:
(i) Given
f(x) = x4 – 8x3 + 22x2 – 24x + 5 at x = 0, -2
f'(x) = 4x3 – 24x2 + 44x – 24
At x = 0, f'(0) = -24 < 0 ∴ f(x) is decreasing at x = 0
At x = -2, f'(-2) = 4(-2)3 – 24(-2)2 + 44 (-2) – 24 < 0
= 32 – 96 – 88 – 24 <0 (negative)
∴ f(x) is decreasing at x = -2

KSEEB Solutions

(ii) Given
f(x) = 4x3 – 15x2 + 12x – 2 at x = 1,-1
f'(x) = 12x2 – 30x + 12
At x = 1, f'(x) = 12 – 30 + 12 = -6 < 0
∴ f(x) is increasing at x = 1
At x = -1, f'(-1) = 12(-1)2 – 30 (-1) + 12 = 54 > 0
∴ f(x) is increasing at x = -1

(iii) Given
f(x] = (x – 1) (x – 2)2 at x = 1, 3
f'(x) = (x – 1) (2 (x – 2} + (x – 2)2>)
At x = 1, f'(1) = 0 + (-1)2 = 1 > 0
∴ f(x) is increasing at x = 1
At x = 3, f'(3) = 2 × 2(1] + 1 = 5 > 0
∴ f(x) is increasing at x = 3.

Question 2.
Find the value of x (Interval) for which the function is increasing or decreasing.
(i) f(x) = 2x3 – 15x2 – 84x + 7
(ii) f(x) = x4 – 2x3 + 1
(iii) f(x) = x3 – 3x2 + 3x – 100
(iv) f(x) = 2x2 – 96x + 5
(v) f(x) = 10 – 6x – 2x2
(vi) f(x) = 2x3 + 9x2 + 12x + 20
Answer:
(i) Given
f(x) = 2x3 – 15x2 – 84x + 7
f'(x) = 6x2 – 30x – 84
= 6(x2 – 5x – 14) = 6(x – 7] (x + 2)
f(x) is increasing if f'(x) > 0
(x – 7) (x + 2) > 0
Case – 1
x – 7 > 0 & x + 2 > 0
x > 7 & x > -2
x > 7 ⇒ (7, ∞)

Case – 2:
x – 7 < 0 & x + 2 < 0
x < 7 & x < -2
x < -2 ⇒ (-∞ , -2) U (7,∞)
∴ Interval is (-∞ , -2) U (7,∞)
f(x) is decreasing if f'(x) < 0
(x – 7) (x + 2)
x – 7 < 0 & x + 2 > 0

Case -1:
x < 7 & x > -2
∴ -2 < x < 7

Case – 2 x – 7 > 0 & x + 2 < 0
x > 7 & x < -2 (not possible)

KSEEB Solutions

(ii) Given f(x) = x4 – 2x3 + 1
f'(x) = 4x3 – 6x2
= 2x2 (2x – 3) Here 2x2 > 0
f(x) is increasing if f'(x) > 0
⇒ 2x – 3 > 0
x > \(\frac { 3 }{ 2 }\) ⇒ (\(\frac { 3 }{ 2 }\), ∞) is the interval
f(x) is decreasing if f ‘(x) < 0
2x – 3 < 0
x < \(\frac { 3 }{ 2 }\) (-∞, \(\frac { 3 }{ 2 }\)) is the interval`

(iii)
Given f(x) = x3 – 3x2 + 3x – 100
f'(x) = 3x2 – 6x + 3
= 3(x2 -2x + 1)
= 3(x – 1)2
f(x) is increasing
f ‘(x) > o ⇒ (x – 1)2 > 0
increasing for all
∵ f'(x) > 0 it will not be decreasing

(iv) Given f(x) = 2x2 – 96x + 5
f ‘(x) = 4x – 96 = 4 (x – 24)
f(x) is increasing if f’ (x) > 0
x – 24 > 0
x > 24
f(x) is decreasing if f'(x) < 0
x – 24 < 0
x < 24

(v) f(x) = 10 – 6x – 2x2
f'(x) = -6 -4x = -(6 + 4x) = -(6 + 4x)
f(x) is increasing if -(6 + 4x) > 0
⇒ 6 + 4x < 0
⇒ 4x < -6
⇒ x > –\(\frac { 3 }{ 2 }\)
f(x) is decreasing : if -(6 + 4x) < 0 ⇒ 6 + 4x > 0 ⇒ 4x > -6 ⇒ x > –\(\frac { 3 }{ 2 }\)

(vi) Given f(x) = 2x3 + 9x2 + 12x + 20
f'(x) = 6x2 + 18x + 12
= 6(x2 + 3x + 2)
= 6(x + 2) (x + 1)
f(x) is increasing if f ‘(x) > 0
(x + 1) (x + 2) > 0

KSEEB Solutions

Case 1:
x + 2 > 0 and x + 1 > 0
x > -2 and x > -1
⇒ x > -1 ⇒ (-1, ∞)

Case 2:
x + 2 < o & x + 1 < 0
x < -2 & x < -1
x < -2 ⇒ (-∞, -2)
f(x) is decreasing if f ‘(x) < 0
(x + 2) (x + 1) < 0

Case 1:
x + 2 < 0 and x + 1 > 0
x < -2 and x > -1
Not possible

Case – 2:
x + 2 > 0 and x + 1 < 0
x > -2 and x < -1
x > -2 and x < -1 ⇒ -2 < x < -1.

2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.3

ular sakti 88

link ular sakti 88

link ular sakti 88

slot gacor hari ini

slot gacor oktoober 2024

agen slot gacor

Stationplay

Stationplay

Fixislot

Mitosbet

Sv388

10naga

10naga

Borneo303

Sv388

Juraganslot

Juraganslot

Juraganslot

Students can Download Basic Maths Exercise 19.3 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.3

Part- A

2nd PUC Basic Maths Application of Derivatives Ex 19.3 Two or Three Marks Questions with Answers.

Question 1.
Find the maximum and minimum value of the following function.
(i) f(x) = x3 – 3x
(ii) f(x) = x3 – 6x2 + 9x + 15(0 ≤ x ≤ 6)
(iii) f(x) = x4 – 62x2 + 120x + 9
(iv) f(x) = 2x3 – 3x2 – 12x + 12
(v) f(x) = 2x3 – 3x2 – 36x + 10
(vi) f(x) = 9x2 + 12x + 2
(vii) f(x) = 2x3 – 15x2 + 36x + 10
(viii) f(x) = 2x3 – 21x2 + 36x – 20
(ix) f(x) = 2x3 – 15x2 + 36x + 10
(x) f(x) = 12x5 – 45x4 + 40x3 + 6
Answer:
(i) Given f(x) = x3 – 3x …..(1)
f'(x) = 3x2 – 3 = 3(x2 – 1) = 3(x – 1) (x + 1) …..(2)
f'(x) = 0 ⇒ x = ±1
f”(x) = 6x – (3)
At x = 1, f”(1) = 6 > 0, f(x) is minimum at x = 1
& minimum value is f(1) = 1 – 3 = -2
At x = -1, f”(-1) = -6 < 0 f(x) is maximum at x = -1
Maximum value is f(-1) = -1 + 3 = 2

KSEEB Solutions

(ii) f(x) = x3 – 6x2 + 9x + 15 (0 ≤ x ≤ 6) – (1)
f'(x) = 3x2 – 12x + 9
= 3(x2 – 4x + 3) = 3 (x – 3) (x + 1] = 0
f “(x) = 6x – 12
f'(x) = 0 ⇒ x = 1 or 3
At x = 1 f”(1) = 6 – 12 = -6 < 0 the function is maximum at x = 1.
And maximum value is f (1) = 1 – 6 + 9 + 15 = 19
At x = 3, f”(3) = 6 × 3 – 12 = 18 -12 = 6 > 0, f is minimum at x = 3
And minimum value is f(3) = 33 – 6.32 + 9.3 + 15 = 27 – 54 + 27 + 15 = 15.

(iii) Given f(x) = x4 – 62x2 + 120x + 9 …..(1)
f”(x) = 4x3 – 124x + 120 ….(2)
f”(x) = 12x2 – 124 …..(3)
for a function to be maximum or minimum of f'(x) = 0.
⇒ x3 – 31x + 30 = 0 here x = 1 is a root
2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.3 - 1
⇒ x2 + x – 30 = 0 ⇒ (x + 6)(x – 5) = 0 ⇒ x = 5 – 6
Put x = 1 in (3] we get f”(x) = (12 – 124) < 0
f(x) att-ains maximum at = 1 & maximum at x = 1 & max value is
f(1) = 1 – 62 + 120 + 9 = 68.
At x = 5, f”(5) = 12(5)2 124 = 300 – 124 > 0 f(x) attains
minimum at x = 5, & minimum value is f(5) = 625 – 1550 + 600 + 9 = – 316
At x = – 6, f “(-6) = 12 (-6)2 – 124 = 432 – 124 > 0
f(x) attains minimum at x = -6 & minimum value is
f (-6) = (-6)4 – 62(-6)2 + 120 (-6) + 9
= 1296 – 2232 – 720 + 9 = -1647.

(iv) f(x) = 2x3 – 3x2 – 12x + 12 ….(1)
f'(x) = 6x2 – 6x – 12 = 6 (x2 – x – 2) …(2)
f'(x) = 12x – 6 ….(3)
for a function to be maximum or minimum f ‘(x) = 0 ⇒ (x – 2) (x + 1) = 0
⇒ x = 2 or – 1
Put x = (-1) in (3) we get f “(-1) = -12 – 6 = -18 < 0
f(x) att-ains maximum at x = -1 & maximum value is
f(-1) = 2 (-1)3 – 3 (-1)2 – 12(-1) + 12 = 19
Put x = 2 in(3) f”(2) = 24 – 6 = 18 > 0
f(x) attains minimum at x = 2 & minimum value is
f(2) = 2 (2)3 – 3(2)2 – 12(2) + 12 = 6- ^-24+ >^=8
2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.3 - 2

KSEEB Solutions

(v) Given f(x) = 2x3 – 3x2 – 36x + 10 ….(1)
f ‘(x) = 6x2 – 6x – 36 = 6 (x2 – x – 6) …..(2)
f “(x) = 12x – 6 ……(3)
For a function to be maximum of minimum f ‘(x) = 0
⇒ (x2 – x – 6) = 0 => (x – 3) (x + 2) = 0
⇒ x = 3 or – 2
Put x = 3 in equation (3) we get
f “(3) = 36 – 6 = 30 >0
⇒ f(x) attains minimum at x = 3
Minimum value is f(3) = 2(3)3 – 3 (32) – 36 (3) + 10
f(3) = 54 – 27 – 108 + 10 = -71
Put x = -2 in equation (3) we get
f”(-2) = -24 – 6 = – 30 < 0 ⇒ f (x) attains maximum at x = -2
Maximum value is f(-2) = 2(-2)3 -3(-2)2 – 36 (-2] + 10
f(-2) -16-12 + 72 + 10 = 54

(vi) Given f(x) = 9x2 + 12x + 2 ….(1)
f'(x) = 18x + 12 …(2)
f”(x) = 18 > 0 ……(3)
⇒ f(x) attains minimum
f'(x) = 0 ⇒ 18x+ 12 = 0 ⇒ x = \(-\frac{2}{3}\)
& f” \(\left(-\frac{2}{3}\right)\) 18 > 0 ⇒ f(x) is minimum & the minimum value is
f\(\left(-\frac{2}{3}\right)\) = 9\(\left(\frac{4}{9}\right)\) + 12 \(\left(-\frac{2}{3}\right)\) + 2
= 4 – 8 + 2 = -2

(vii) f(x) = 2x3 – 15x2 + 36x + 10 …….(1)
f ‘(x) = 6x2 – 30x + 36 = 6 (x2 – 5x + 6) ……..(2)
f”(x) = 12x – 30 …..(3)
f'(x) = 0 ⇒ x2 -5x + 6 = 0 ⇒ (x – 3)(x – 2) = 0 ⇒ x = 3 or 2
when x = 3 f “(x) = 12x – 30
f “(3) = 36 – 30 = 6 > 0 ⇒ f(x) has minimum
Minimum value is f(3) = 2(3)3 – 15(3)2 + 36(3) + 10
f(3) = 54 – 135 + 108 + 10 = 37
when x = 2, f”(2) = 24 – 30 = -6 < 0 ⇒ f(x) has maximum
maximum value is f(2) = 2(2)3 – 15(2) + 36(2) + 10
f(2) = 16 – 60 + 72 + 10 = 38.

KSEEB Solutions

(viii) Given f(x) = 2x3 – 21x2 + 36x – 20 ….. (1)
f'(x) = 6x2 – 42x + 36 …… (2)
= 6(x2 – 7x + 6)
f'(x) = 6 (x – 1) (x – 6) = 0 ⇒ x = 1 or 6
f”(x) = 12x – 42 … (3)
when x = l,f “(1) = 12 – 42 = -30 < 0 ⇒ f(x) is maximum
maximum value is f(1) = 2 – 21 + 36 – 20 = -3
when x = 6, f “(6) = 72 – 42 = 30 > 0 ⇒ f(x) is minimum
minimum value is f(6) = 2(6)33 – 21 (6)2 + 36(6) – 20
f(6) = 432 – 756 + 216 – 20 = -128

(ix) Given f(x) = 12x5 – 45x4 + 40 x3 + 6 ….(1)
f'(x) = 60x4 – 180x3 + 120x2 ….(2)
= 60x2 (x2 – 3x + 2)
= 60x2 (x – 1) (x – 2)
f ‘(x) = 0 ⇒ 60x2 (x – 1) (x – 2) = 0 ⇒ x = 0, 1, 2
f “(x) = 60 (4x3 – 6x + 4x) ……. (3)
when x = 0, f”(x) = 0 ⇒ f(x) has neither maximum nor minimum
when x = 1, f”(x) = -1 < 0 ⇒ f(x) has a maximum & maximum value is
f(1) = 12 – 45 + 40 + 6 = 13
When x =2 f”(x) = 4 > 0 ∴ f(x) has a minimum
minimum value is f(2) = 12(32) – 45(16) + 40(8) + 6
f(2) = 384 – 720 + 320 + 6 = -10.

Question 2.
The sum of two natural numbers is 48. Find the numbers when their product is maximum.
Answer:
Let the two numbers be x & y.
Given x + y = 48 & product: = xy where y 48 – x.
Let p = xy = x (48 – x) = 48x – x2.
\(\frac{d p}{d x}\) = 48 – 2x
\(\frac{d p}{d x}\) = 0 ⇒ 48 – 2x = 0 x = 24
\(\frac{\mathrm{d}^{2} \mathrm{p}}{\mathrm{d} \mathrm{x}^{2}}\) = -2 < 0 ⇒ product is maximum
x = 24 ⇒ y = 48 – 24 = 24
⇒ the two numbers are 24, 24.

KSEEB Solutions

Question 3.
Find two positive numbers whose sum is 14 and the sum of whose square is minimum.
Answer:
Let the two numbers be x and y
Given x + y = 14 & S = x2 + y2 where y = 14 – x
∴ S = x2 + (14 – x)2 = x2 + 142 + x2 – 28x = 2x2 – 28x + 142
\(\frac{d s}{d x}\) = 4x – 28 → (1) \(\frac{d s}{d x}\) = 0 ⇒ 4x – 28 = 0 ⇒ x = 7
\(\frac{\mathrm{d}^{2} \mathrm{s}}{\mathrm{d} \mathrm{x}^{2}}\) = 4 > 0, sum is minimum.
∴ y = 14 – x = 14 – 7 = 7
∴ the two positive number are 7 & 7.

Question 4.
Find two positive numbers whose sum is 30 and the sum of their cubes is minimum.
Answer:
Let the two numbers be x & y.
Given x + y = 30 & S = x3 + y3 where y = 30 – x
S = x3 + (30 – x)3 = x3 + (30)3 – x3 – 2700x + 90x2
\(\frac{d s}{d x}\) = – 2700 + 180x
\(\frac{d s}{d x}\) = 0 ⇒ x = \(\frac{2700}{180}\) = 15
\(\frac{\mathrm{d}^{2} \mathrm{s}}{\mathrm{d} \mathrm{x}^{2}}\) = 180 > 0 ⇒ sum of cubes is minimum & y = 30 – 15 = 15
∴ two positive number are 15 & 15.

Question 5.
The product of two natural numbers is 64. Find the numbers is their sum is minimum
Answer:
Let the two numbers be x & y
Given xy = 64 ⇒ y = \(\frac{64}{x}\)
Let s = x + y = x + \(\frac{64}{x}\).
\(\frac{d s}{d x}\) = 1 – \(\frac{64}{x^{2}}, \frac{d s}{d x}\) = 0 ⇒ x2 = 64 ⇒ x = ±8
\(\frac{d^{2} s}{d x^{2}}=+\frac{128}{x^{3}}\)
When x = 8, \(\frac{d^{2} s}{d x^{2}}=\frac{128}{8^{3}}\) > 0 ⇒ s is minimum
When x = -8, \(\frac{d^{2} s}{d x^{2}}=\frac{128}{8^{3}}\) < 0 ⇒ s is maximum
The two numbers are 8 & 8.

KSEEB Solutions

2nd PUC Basic Maths Question Bank Chapter 6 Mathematical Logic Ex 6.1

Students can Download Basic Maths Exercise 6.1 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 6 Mathematical Logic Ex 6.1

Part – A

2nd PUC Basic Maths Mathematical Logic Ex 6.1 One Mark Questions and Answers

Question 1.
Symbolise the following propositions:
(1) 3x = 9 and x<7
(ii) 33 + 11 ≠ 3 or 8 – 6 = 2
(iii) If two numbers and equal then their squares are not equal.
(iv) If oxygen is a gas then gold is a compound
(v) y + 4 ≠ 4 ore is not a vowel
Answer:
(i) Let p:3x = 9, q = x < 7
Given in symbols is p ∧ q

(ii) Let p:33 = 11 = 3, q= 8 – 6 = 2
Given is ~p ∨ q

KSEEB Solutions

(iii) Let p: Two numbers are equal, q: Squares are equal then given is p → ~q

(iv) Let p: Oxygen is a gas
q: Gold is a compound
Then given is p → q

(v) P: y + 4 = 4, q: e is a vowel given proposition is ~p v ~q

Part – B

2nd PUC Basic Maths Mathematical Logic Ex 6.1 Two or Three Marks Questions and Answers

Question 1.
if p, q and r are propositions with truth values F, T and F respectively, then find the truth values of the following compound propositions:
(i) (~p → q) ∨ r
(ii) (p ∧ ~q) → r
(iii) p → (q → r)
(iv) ~(p → q) ∨~(p ↔ q)
(v) (p ∧ q) ∨ ~ r
(vi) ~(p ∨ r) → ~q
Answers:
(i) (~p → q)∨ r
(~F →T) ∨ r
(T →T) ∨ F
T ∨ F
= T

(ii) (p ∧~q) → r
(F∧ ~T) → F
(F ∧F) → F
F →F
= T

KSEEB Solutions

(iii) p → (q → r)
F →(T →F)
F →(T →F)
= T

(iv) ~(p → q) ∨~(p↔ q)
~(F →T) ∨ ~(F↔T)
~T ∨ ~F
F ∨ T = T

(v) (p ∧ q) ∨ ~ r
(F ∧ T) ∨ ~ r
F ∨ T
= T

(vi) ~(P ∨ r) → ~ q
~(F ∨ F) ∨ ~ T
~F → ~ T
T → F
= F

KSEEB Solutions

Question 2.
Answer:
(1) If the compound proposition “(p → q) ∧ (p ∧ r)” is false, then find the truth values of p, q and r.
(ii) If the compound proposition p→ (q ∨ r) is false, then find the truth values of p, q and r.
(iii) If the compound proposition p → (~q ∨ r) is false, then find the truth values of p, q and r.
(iv) If the truth value of the propositions (p ∧ q) → (r ∨ ~s) is false, then find the truth values of p, q, rand s.

Answers:
(i) Given (p → q) ∧ (p ∧ r) is false
(a) Case 1: p → q is true & p ∧ r is false
p is T q is T & p is T &ris F
p = T, q = T, r = F
Case 2(a): p = F, q = T p ∧ r= F → p = F, r = F
p = F, q = T, r = f

(b): (p →q) is F & par is true
T → F = F
T ∧ T is T
P=T, q = F, r=T

Case 3: (p → q) is F & (p ∧ r) is false
T → F = F
F ∧ F = F
F ∧ T = F
F ∧ F = F .
∴ p = T, q = F, r= F.

(ii) Given p → (q ∨ r) is false
T → F = F
∴ p = T & q ∨ r is false =
F ∨ F= F
∴ p = T, q = F & r= F

KSEEB Solutions

(iii) Given p → (q ∨ r) is false
Then T → F= F
∴ P = T, ~ q ∨ r= F
F ∨ F = F
∴ q = T, q = T, r = F.

(iv) Given (p ^ q) → (r ∨ ~s) is false
We know that T → F = F
∴ p∧q = T and r ∨ ~s = F is false
T∧ T = T
F ∨ F= F is false
∴ p = T, q = T, r = F, S = T

2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2

Students can Download Basic Maths Exercise 18.2 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2

Part-A

2nd PUC Basic Maths Differential Calculus Ex 18.2 One or Two Marks Questions and Answers

Question 1.
(a2 – x2)10
Answer:
Let y(a2 – x2)10
\(\frac{d y}{d x}\) = 10(a2 – x2)10 – 1. \(\frac{d y}{d x}\)(a2 – x2)
= 10(a2 – x2)9 (-2x) = -20x (a2 – x2)9

Question 2.
log[log(log x)]
Answer:
Let y = log x (log log(x))
\(\frac{d y}{d x}=\frac{1}{\log (\log x)} \cdot \frac{1}{\log x} \cdot \frac{1}{x}\)

Question 3.
cos x3
Answer:
Let y = cosx3
\(\frac{d y}{d x}\) = -sinx3 .3x2

KSEEB Solutions

Question 4.
sin3\(\sqrt{x}\)
Answer:
Let y = sin3(\(\sqrt{x}\)) = (sin \(\sqrt{x}\)))3
\(\frac{d y}{d x}\) = 3.sin2 \(\sqrt{x}\) . cos \(\sqrt{x}\) . \(\frac{1}{2 \sqrt{x}}\)

Question 5.
[log(cos x)]2
Answer:
Let y = [log(cos x)]2
\(\frac{d y}{d x}\) = 2log(cos x). \(\frac{1}{\cos x}\)(-sin x)
= -2 tan x log(cos x)

Question 6.
\(\sec \left(x+\frac{1}{x}\right)\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 1

Question 7.
\(7^{\sin \sqrt{x}}\)
Answer:
Let y = \(7^{\sin \sqrt{x}}\)
\(\frac{d y}{d x}\) = \(7^{\sin \sqrt{x}}\) . log 7 . cos \(\sqrt{x}\) . \(\frac{1}{2 \sqrt{x}}\)

Question 8.
\(\sqrt{\cot \sqrt{x}}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 2

Question 9.
log(sin \(\sqrt{x}\))
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 3

Question 10.
log[log (tan x)]
Answer:
Let y = log(log (tan x))
\(\frac{d y}{d x}\) = \(\frac{1}{\log (\tan x)} \cdot \frac{1}{\tan x} \cdot \sec ^{2} x\)

KSEEB Solutions

Question 11.
cos 3x . sin 5x
Answer:
Let y = cos 3x . sin 5x (Trans using formula)
sy = 2[sin 8x – sin(-2x)] = 2 [sin 8x] + 2sin 2x
\(\frac{d y}{d x}\) = 16 cos 8x + 4 cos 2x
OR
Let y = cos 3x . sin 5x
\(\frac{d y}{d x}\) = cos 3x(5 cos 5x) + sin 5x (-3 sin 3x) = 5 cos 3x sin5x – 3 sin 5x.sin 3x.

Question 12.
sin x . sin 2x
Answer:
Let y = sin x . sin 2x
\(\frac{d y}{d x}\) = sin x(2 cos2x) + sin 2x cos x = 2 sin x cos 2x + cos x sin 2x

Question 13.
eloge(x + \(\sqrt{x^{2}+a^{2}}\)).
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 4

Question 14.
e2x . sin 3x.
Answer:
Let y = e2x . sin 3x
\(\frac{d y}{d x}\) = e2x(3 cos 3x) + sin 3x(2e2x)

Question 15.
cos5x . cos(x5).
Answer:
Let y = cos5x . cos(x5)
\(\frac{d y}{d x}\) = cos5x(-sin(x5)5x4) + cos(x5).5cos4x.(-sin x)
= – cos5x sin(x5) 5x4 – 5 cos(x5) . cos4x . sin x

Question 16.
3x2 .log x.
Answer:
Let y = 3x2 .log x.
\(\frac{d y}{d x}\) = 3x2 . \(\frac { 1 }{ x }\) + logx . 3x2 . loge 3 . 2x .

Question 17.
\(\frac{x}{\sqrt{x^{2}-1}}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 5

KSEEB Solutions

Question 18.
\(\frac{x}{\sqrt{2 x-1}}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 6

Question 19.
\(\frac{\mathrm{e}^{\sin \mathrm{x}}}{\sqrt{\log \mathrm{x}}}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 7

Question 20.
\(\log \left(\frac{1+\sin x}{1-\sin x}\right)\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 8

KSEEB Solutions

Part-B

2nd PUC Basic Maths Differential Calculus Ex 18.2 Three Marks Questions and Answers

Question 1.
If y = \(\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)\) , show that \(\frac{d y}{d x}\) = sec2 \(\left(x+\frac{\pi}{4}\right)\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 9

Question 2.
If y = log \(\left[\frac{1-\cos x}{1+\cos x}\right]\) , prove that \(\frac{d y}{d x}\) = 2 cosec x.
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 10

Question 3.
Differentiate e2x w.r.t x from first principles
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 11

KSEEB Solutions

Question 4.
Differentiate sin 2x w.r.t x from first principles.
Answer:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 12

Question 5.
Differentiate tan ax w.r.t x froom the principles.
Answers:
2nd PUC Basic Maths Question Bank Chapter 18 Differential Calculus Ex 18.2 - 13

2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3

Students can Download Basic Maths Exercise 7.3 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3

Part – A

2nd PUC Basic Maths Ratios and Proportions Ex 7.3 Three Marks Questions and Answers ( 3 × 4 = 12)

Question 1.
If ₹ 150 maintains a family of 4 persons for 30 days. How long 7600 maintain a family of 6 persons?
Answer:
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 1

Question 2.
300 workers can finish a work in 8 days. How many workers will finish the same work in 5 days.
Answer:
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 2
Workers and days are in inverse proportion 300 : x = 5 : 8
x = \(\frac{300 \times 8}{5}\) = 480 workers

KSEEB Solutions

Question 3.
5 carpenters can earn ₹540 in 6 days working 9 hours a day. How much will 8 carpenters can earn in 12 days working 6 hours a day?
Answer:
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 3
Days and amount are in direct proportion, hours and amount are in direct proportion
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 4

Question 4.
A mixture contains milk and water in the ratio 6:1 on adding 5 litres of water, the ratio of milk and water becomes 7 : 2, find the quantity of milk in the original mixture.
Answer:
Quantity of milk is 6x and water is 1x, 5 liters of water is added, the new ratio is 7:2
\(\frac{6 x}{x+5}=\frac{7}{2}\)
12x = 7x + 35 ⇒ 5x = 35
x = 7
The quantity of milk is 6(x) = 6 (7) = 42

KSEEB Solutions

Part – B

2nd PUC Basic Maths Ratios and Proportions Ex 7.3 Five Mark Questions and Answers 

Question 1.
A jar contains two liquids X and Y in the ration 7:5. When 6 litres of the mixture is drawn and the jar in filled with the same quantity of Y, the ratio of Xand Y becomes 7:9. Find the quantity X in the jar initially,
Answer:
Let quantity of liquid X is 7x and Y is 5x 6 liters of the mixture is drawn.
i.e.,\(\frac{7 \times 6}{12}=\frac{7}{2}\) litres of X is removed
\(\frac{5 \times 6}{12}=\frac{5}{2}\) litres of Y is removed
∴ The remaining quantity of X and Y is 7x – \(\frac{7}{2}\) and 5x –\(\frac{5}{2}\) respectively.
6 litres of Y is added to get ratio 7:9.
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 5

Question 2.
Two taps fill a cistern separately in 20 minutes and 40 minutes respectively and a drain pipe can drain off 30 litres per minute. If all the three pipes are opened, the cistern fills in 72 minutes what is the capacity of the cistern?
Answer:
Time taken by tap A is 20 min
∴ \(\frac{1}{20}\)b of the Cistern is filled by tap A
Similarly \(\frac{1}{40}\) of the Cistern is filled by tap B
Both the taps can fill \(\frac{1}{20}+\frac{1}{40}=\frac{3}{40}\)
“204040 A drain tap can drain 30 liters per minute the cistern is filled in 60 minute.
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 6
The drain tap can drain in 17 minutes in 1minute it drains 30 litres
In 17 minutes it drains 30 × 17litres
∴ The capacity of the cistern = 510 litres

KSEEB Solutions

Question 3.
If ten persons can do a job in 60 days. In how many days can twenty persons do the same job?
Answer:
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 7
Persons & days are in inverse proportion
∴ 10:20 = x : 60
X= \(\frac{60 \times 10}{20}\) = 30days 20

Question 4.
A can do a piece of work in 20 days, B in 30 days and C in 60 days. All of them began to work together. However, A left the job after 6 days and B quit work 6 days before the completion of work. How many days
did the work last?
Answer:
In 1 day the work done by A, B & C is
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 8
In 6 days the work done is \(\frac{6}{10}=\frac{3}{5}\)
Remainin work is \(1-\frac{3}{5}=\frac{2}{5}\) of the work
Let the number of days to complete the work be x.C does \(\frac{x}{60}\) of the work & B does \(\frac{x-6}{30}\) of the work in x days
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 9

KSEEB Solutions

Question 5.
8 men and 16 women can finish a job in 6 days | but 12 men & 24 women can finish it in 8 days. How many days will 26 men and 20 women take to finish the job?
Answer:
8 men & 16 women can finish a Job in 6 days
∴ In 1 day the work done is of 48men and 96 women.
12 men & 24 women can finish a job in 8 days. In 1 day the work done is of 96 men & 192 women.
∴ 48 men + 96 women = 96 men + 192 women
26M + 20W = 52W + 20W = 72W
Let the required number of days be x.
192 : 72 = x : 5
X = \(\frac{192 \times 5}{72}=\frac{45}{3}\) = 15 days

Question 6.
4 men and 12 boys can do a piece of work in 5 … days by working 8 hours per day. In how many days 2 men & 4 boys can do the same piece of work working 12 hours a day.
Answer:
Given 4 m = 12 B
1 m = 3 B
2men & 4 boys = 6 boys + 4 boys = 10 boys
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 10
Boys & days are in inverse proposition days & hours are in inverse proportion.
∴ 10 : 12 :: 5 : x 12 : 8
x = \(\frac{12 \times 8 \times 5}{10 \times 12}=\) = 4days.

KSEEB Solutions

Question 7.
A railway train 100 metres long is running at the speed of 30 kmph. In what time will it pass (i) a man standing near the line (ii) a bridge 100 metres long?
Answer:
d = 100m Speed = 30km ph
Speed = \(\frac{\mathrm{d}}{\mathrm{t}}\)
2nd PUC Basic Maths Question Bank Chapter 7 Ratios and Proportions Ex 7.3 - 11
Length of the bridge is 100m
d = 100 + 100 = 200
t = \(\frac{200 \times 18}{30 \times 5}\) = = 24 Sec.

KSEEB Solutions

Question 8.
The driver of car is traveling at a speed of 36 kmph and spots a bus 80 metres ahead of him. After 1 hour the bus is 120 metres behind the car. What is the speed of the bus?
Answer:
Speed of the car = 36 kmph
Speed of the bus = x kmph
Relative speed = (36 – x) kmph
Distance = 200m
Bus by 120m
∴ t = \(\frac{200}{36-x}\)
1 = \(\frac{200}{(36-x) 1000}\)
36 – x = 0.2
36 -0.2 = x
x = 35.8
∴ Speed of the bus is 35.8 kmph.

2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.1

Students can Download Basic Maths Exercise 19.1 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 19 Application of Derivatives Ex 19.1

Part-A

2nd PUC Basic Maths Application of Derivatives Ex 19.1 Two Marks Questions and Answers

Question 1.
The displacement ‘s’ of a particle at time ‘t’ is given by S = 4t3 – 6t2 + t – 7. Find the velocity and acceleration when t = 2 sec.
Answer:
Given S = 4t3 – 6t + t – 7
Velocity = v = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = 12t2 -12t + 1
At t = 2secs, v = 12(2)2 – 12(2) + 1 = 48 – 24 + 1 = 25 units/sec.
At t = 2 sec, acceleration = 24.2 – 12 = 48 – 12 = 36 units/sec2.

Question 2.
If S = 5t2 + 4t – 8. Find the initial velocity and acceleration, (s = displacement, t = time).
Answer:
Given s = 5t2 + 4t – 8
V = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = 10t + 4 dt
Initial velocity is velocity when t = 0
i.e., = 10.0 + 4 = 4 units/sec.
Acceleration = \(\frac{\mathrm{dv}}{\mathrm{dt}}\) = 10 units /sec2.

KSEEB Solutions

Question 3.
A stone thrown vertically upward rises ‘s’ ft. in ‘t’ sec. where s = 80t – 16t2. What its velocity after 2 sec.? Find the acceleration?
Answer:
Given S = 80t -16t2
v = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = 80 – 32t
At t=2 sec, v = 80 – 32 (2)
= 80 – 64 = 16 ft./sec.
Acceleration = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = -22 ft/sec2 .

Question 4.
A body is thrown vertically upwards its distance S feet is’t’ sec. is given by S = 5 + 12t – t2. Find the greatest highest by the body.
Answer:
Given s = 5 + 12t – t2
v = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = 12 – 2t dt
Maximum height ⇒ Kinetic energy = 0 ⇒ v = 0 ⇒ 12 – 2t = 0 ⇒ t = 6 sec
∴ Greatest height = s = 5 + 12.6 – 62
= 5 + 72 – 36 = 77 – 36 = 41 feet.

Question 5.
If v = \(\sqrt{s^{2}+1}\) prove that acceleration is ‘S’ (V = velocity, S = displacement).
Answer:
Given v = \(\sqrt{s^{2}+1}\)
Acceleration = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = \(\frac{1}{2 \sqrt{s^{2}+1}} \cdot 2 s \frac{d s}{d t}=\frac{1}{2 v}\) . 2 . s . v . s units / sec2.

Question 6.
If S = at3 + bt. Find a and b given that when t = 3 velocity is ‘O’ and the acceleration is 14 unit. (S = displacement, t = time).
Answer:
Given s = at3 + bt; v = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = 3at2+b
Acceleration = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = 6at
When v = 0 then 3at2 + b = 0 ⇒ 27a + b = 0.
t = 3 sec
When acceleration = 14 then 14 = 6a.3, b = -27a = \(-\frac{27.7}{9}\) = -21
F = 3 sec. a = \(\frac{14}{18}=\frac{7}{9}\)
∴ a = \(\frac { 7 }{ 9 }\) and b = -21.

Question 7.
When the brakes are applied to moving car, the car travels a distance ‘s’ ft. in ‘t’ see given by s = 8t – 6t2 when does the car stop?
Answer:
Given s = 8t – 6t2
v = \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = 8 – 12t car stops when v = 0
∴ 8 – 12t = 0 ⇒ t = \(\frac{8}{12}=\frac{2}{3}\) sec.

KSEEB Solutions

Part-B

2nd PUC Basic Maths Application of Derivatives Ex 19.1 Three Marks Questions and Answers.

Question 1.
The radius of sphere is increasing at the rate of 0.5 mt/sec. Find the rate of increase of its surface area and volume after 3 sec.
Answer:
Given \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = 0.5 , t = 3 sec, \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = ? \(\frac{\mathrm{dv}}{\mathrm{dt}}\) = ?
surface area = s = 4πr2
\(\frac{d s}{d t}\) = 4π . 2r . \(\frac{d r}{d t}\)

= 4π × 2 × 1.5 × 0.5
= 6π m2/sec
dr = 0.5 × dt
⇒ r = 0.5 t
= 0.5 × 3
= 1.5

Question 2.
The surface area of a spherical bubble is increasing at the rate of a 0.8cm2 / sec. Find at what rate is its volume increasing when r = .25cm [r = radius of the sphere].
Answer:
Given \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = 0.8 cm2 / sec. r = 2.5 cm, \(\frac{\mathrm{dv}}{\mathrm{dt}}\) = ?
s = 4πr2
\(\frac{\mathrm{dr}}{\mathrm{dt}}\) = 4π . 2r × \(\frac{\mathrm{dr}}{\mathrm{dt}}\)
0.8 = 4π × 2 × 2.5. \(\frac{\mathrm{dr}}{\mathrm{dt}}\) ⇒ \(\frac{0.8}{8 \pi \times 2.5}=\frac{0.1}{2.5 \pi}\)
v = \(\frac { 4 }{ 3 }\)πr3
\(\frac{d v}{d t}=\frac{4}{3} \pi 3 r^{2} \cdot \frac{d r}{d t}=4 \pi \times(2.5)^{2} \times \frac{0.1}{2.5 \pi}=1 \mathrm{cc} / \mathrm{sec}\)

Question 3.
A spherical balloon is being inflated at the rate 35cc/sec. Find the rate at which the surface area of the balloon increases when its diameter is 14cm.
Answer:
Given \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = 35cc /sec 2r = 14 ⇒ r = 7, \(\frac{\mathrm{ds}}{\mathrm{dt}}\) = ?, \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = ?
v = \(\frac { 4 }{ 3 }\)πr3 s = 4πr2
\(\frac{d V}{d t}=\frac{4}{3} \pi 3 r^{2} \frac{d r}{d t} \quad \frac{d S}{d t}=4 \pi 2 r \frac{d r}{d t}\)
35 = 4π . 72 \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = 4π × 2 × 7 × \(\frac{5}{28 \pi}\)
\(\frac{d r}{d t}=\frac{35}{196 \pi}=\frac{5}{28 \pi}=10 \mathrm{cm}^{2} / \mathrm{sec}\)

Question 4.
The radius of a circular plate is increasing at the rate of \(\frac{2}{3 \pi}\) cm/sec. Find the rate of change of its area when the radius is 6cm.
Answer:
Given \(\frac{d r}{d t}=\frac{2}{3 \pi} r=6 \mathrm{cm} \frac{d A}{d t}=?\)
A = πr2
2nd PUC Basic Maths Question Bank Chapter 19 Indefinite Integrals Ex 19.1 - 1

KSEEB Solutions

Question 5.
A circular patch of oil spreads on water the area growing at the rate of 16cm2/min. How fast are radius and the circumference increasing when the diameter is 12cm.
Answer:
Given \(\frac{\mathrm{dA}}{\mathrm{dt}}\) = 16cm2/min, d = 2r = 12cm, \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = ? \(\frac{\mathrm{dc}}{\mathrm{dt}}\) = ? r = 6cm
A = πr2 c = 2πr
\(\frac{\mathrm{dA}}{\mathrm{dt}}\) = π . 2r . \(\frac{\mathrm{dr}}{\mathrm{dt}}\) \(\frac{\mathrm{dc}}{\mathrm{dt}}\) = 2π \(\frac{\mathrm{dr}}{\mathrm{dt}}\)
16 = 2π .6 . \(\frac{\mathrm{dr}}{\mathrm{dt}}\) 2π . \(\frac{4}{3 \pi}=\frac{8}{3}\)cm / min
⇒ \(\frac{d r}{d t}=\frac{16}{12 \pi}=\frac{4}{3 \pi} \mathrm{cm} / \mathrm{min}\)

Question 6.
A stone is dropped into a pond waved in the form of circles are generated and the radius of the outer most ripple increases at the rate 2 inches/sec. How fast is the area increasing when the (a) radius is 5 inches (b) after 5 sec.?
Answer:
Given \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = 2inch/sec, r = 5 inch, \(\frac{\mathrm{dA}}{\mathrm{dt}}\) = ?
(a) A = πr2
\(\frac{\mathrm{dA}}{\mathrm{dt}}\) = π2r. \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = π × 2 × 5 × 2 = 20π sq. inches / sec.

(b) After 5 sec, dr = 2dt
r = 2t
⇒ when t = 5, r = 10 inches
\(\frac{\mathrm{dA}}{\mathrm{dt}}\) = π . 2r \(\frac{\mathrm{dr}}{\mathrm{dt}}\) = π × 2 × 20 × 2 = 40π square inches/sec.

Question 7.
The side of an equilateral triangle is increasing at the rate \(\sqrt{3}\) cm./sec. Find the rate at which its area is increasing when its side is 2 meters.
Answer:
Given \(\frac{\mathrm{dx}}{\mathrm{dt}}\) = \(\sqrt{3}\) cm/sec., x = 2 meters, \(\frac{\mathrm{dA}}{\mathrm{dt}}\) = ?
Area of equilateral Δle = A = \(\frac{\sqrt{3}}{4}\) x2
\(\frac{d A}{d t}=\frac{\sqrt{3}}{4} \cdot 2 x \frac{d x}{d t}\)
= \(\frac{\sqrt{3}}{4}\) . 2. 200. \(\sqrt{3}\) = 300cm2 / sec.

Question 8.
Water is being poured at the rate of 30 mt3/min. into a cylindrical vessel whose base is a circle of radius 3 mt. Find the rate at which the level of water is rising?
Answer:
Given r = 3mts, \(\frac{\mathrm{dv}}{\mathrm{dt}}\) = 30 m3/min, \(\frac{\mathrm{dh}}{\mathrm{dt}}\) = ?
V = πr2h, r = constant
\(\frac{\mathrm{dv}}{\mathrm{dt}}\) = π . (3)2 . \(\frac{\mathrm{dh}}{\mathrm{dt}}\)
30 = 9π \(\frac{\mathrm{dh}}{\mathrm{dt}}\) ⇒ \(\frac{\mathrm{dh}}{\mathrm{dt}}\) = \(\frac{10}{3 \pi}\) meter/min.

KSEEB Solutions

Question 9.
Sand is being dropped at the rate of 10 mt3/sec. into a conical pile. If the height of the pile twice the radius of the base, at what rate is the height to the pile is increasing when the sand in the pile is 8mt high.
Given
\(\frac{d v}{d t}\) = 10m3/sec, h = 2r, h = 8, \(\frac{d h}{d t}\) = ?
r = \(\frac{\mathrm{h}}{2}\) \(\mathrm{v}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{h}=\frac{1}{3} \pi \cdot\left(\frac{\mathrm{h}}{2}\right)^{2} \cdot \mathrm{h}=\frac{1}{3} \pi \frac{\mathrm{h}^{3}}{4}\)
\(\mathrm{v}=\frac{1}{12} \pi \mathrm{h}^{3} \Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\pi}{12} \cdot 3 \mathrm{h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} ; \quad 10=\frac{\pi}{4} \cdot 8^{2} \cdot \frac{\mathrm{dh}}{\mathrm{dt}}\)
\(\frac{d h}{d t}=\frac{40}{64 \pi}=\frac{5}{8 \pi} \mathrm{m} / \mathrm{sec}\)

Question 10.
A ladder of 15ft. long leans against a smooth vertical wall. If the top slides downwards at the rate of 2ft sec. Find how fast the lower and is moving when the lower end is 12ft. from the wall.
Answer:
2nd PUC Basic Maths Question Bank Chapter 19 Indefinite Integrals Ex 19.1 - 2
Given \(\frac{\mathrm{d} y}{\mathrm{dt}}\) = 2ft /sec, x = 12
From fig, x2 + y2 = 152
122 + y2 = 152
y2 = 152 – 122
y = \(\sqrt{225-144}\)
y = \(\sqrt{81}\) = 9
x2 + y2 = 152 ⇒ 2x \(\frac{\mathrm{dx}}{\mathrm{dt}}\) + 2y\(\frac{\mathrm{dy}}{\mathrm{dt}}\) = 0; 2.12.\(\frac{\mathrm{dx}}{\mathrm{dt}}\) + 2 .9 . 2 = 0
⇒ \(\frac{d x}{d t}=\frac{-36}{24}=\frac{-3}{2} f t / \sec\)

Question 11.
An edge of a variable cube is increasing at the rate of 10cm/sec. How fast the volume and also its surface area is increasing when the edge is 5cm long.
Answer:
Given \(\frac{d x}{d t}\) = 10 cm/sec, x = 5 cm, \(\frac{d v}{d t}\) = ? \(\frac{d s}{d t}\) = ?
(i) V = x3
\(\frac{d v}{d t}\) = 3x2 \(\frac{d x}{d t}\) = 3 × (52) × 10 = 750 cm3/sec.

(ii) S = 6x2 .
\(\frac{d s}{d t}\) = 12 × .\(\frac{d x}{d t}\) = 12.5 .10 = 600 cm2/sec.

KSEEB Solutions

Question 12.
A man 6ft. tall is moving directly away from a lamp post of height 10ft. above the ground. If he is moving at the rate 3ft./sec. Find the rate at which the length of his shadow is increasing and also the tip of his shadow is moving?
Answer:
2nd PUC Basic Maths Question Bank Chapter 19 Indefinite Integrals Ex 19.1 - 3
Let the shadow be x & y be the distance the man walks
Given \(\frac{d y}{d t}\) = 3ft/sec From a similar Δles we have
\(\frac{6}{10}=\frac{x}{x+y}\)
6x + 6y = 10x
6y = 4x ⇒ 3y = 2x
⇒ \(3 \frac{d y}{d t}=2 \frac{d x}{d t} \Rightarrow 2 \frac{d x}{d t}=3.3=9\)
∴ the shadow is increasing at the rate.
∴ \(\frac{d x}{d t}=\frac{9}{2}\) ft/sec & the tip of the shadow moves is
\(\frac{d x}{d t}+\frac{d y}{d t}=\frac{9+6}{2}=\frac{15}{2} \mathrm{ft} / \mathrm{sec}\)

Question 13.
The height of circular cone is 30 cm. and it is constant. The radius of the base is increasing at the rate of 0.25cm/sec. Find the rate of increase of volume of the cone when the radius of base is 10cm.
Answer:
dr
Given h = 30 cm, \(\frac{d r}{d t}\) = 0.25cm/sec. r = 10cm. dt
V = \(\frac { 1 }{ 3 }\) πr2h
\(\frac{d v}{d t}\) = \(\frac{\pi}{3}\)h.2r. \(\frac{d r}{d t}\) = π. \(\frac { 30 }{ 3 }\) . 20.(0.25) = 50π cm2 / sec

Question 14.
The volume of a spherical ball in increasing at the rate 4πcc/sec. Find the rate of increase of the radius of the ball when the volume is 288πCC.
Answer:
Given V = 288π C.C., \(\frac{d v}{d t}\) = 4πcc/ sec \(\frac{d r}{d t}\) = ?
V = \(\frac { 4 }{ 3 }\) πr3
2nd PUC Basic Maths Question Bank Chapter 19 Indefinite Integrals Ex 19.1 - 4
r = 6cm
\(\frac{d v}{d t}=\frac{4}{3} \pi \cdot 3 r^{2} \frac{d r}{d t} 4 \pi=\frac{4}{3} \pi \times 3 \times 36 \times \frac{d r}{d t} \Rightarrow \frac{d r}{d t}=\frac{1}{36} \mathrm{cm} / \mathrm{sec}\)

Question 15.
A drop of ink spreads over a blotting paper so that the circumferences of the blot is 4πcm and it changes 3cm/sec. Find the rate of increase of its radius and also find the rate of increase of its area?
Answer:
Given c = 4π, \(\frac{d C}{d t}\) = 3cm / sec \(\frac{d A}{d t}\) = ? \(\frac{d r}{d t}\) = ?
Circumference = c = 2πr
4π = 2πr ⇒ r = 2
Again
C = 2πr & A = πr2
\(\frac{d c}{d t}\) = 2π . \(\frac{d r}{d t}\) \(\frac{d A}{d t}\) = π . 2r. \(\frac{d r}{d t}\)
3 = 2π . \(\frac{d r}{d t}\) = π . 2. 2. \(\frac{3}{2 \pi}\)
⇒ \(\frac{d r}{d t}\) = \(\frac{3}{2 \pi}\) cm/ sec \(\frac{d A}{d t}\) = 6cm2 / sec

Question 16.
A circular plate of metal is heated so that its radius increase at the rate of O.lmm/min. At what rate is the [plate’s area increasing when the radius is 25cm [1cm = 10mm].
Answer:
Given \(\frac{d r}{d t}\) = 0.1 mm/min, r = 25 cm, \(\frac{d A}{d t}\) A = πr2
\(\frac{d A}{d t}\) = π. 2r . \(\frac{d r}{d t}\) = π . 2. /250 (0.1) = 50πmm2 /min.

KSEEB Solutions

Question 17.
The surface area of a spherical soap bubble increasing at the rate of 0.6cm2/sec. Find the rate at which its volume is increasing when its radius is 3cm.
Answer:
Given \(\frac{ds}{d t}\) = 0.6 cm2 / sec, r = 3cm, \(\frac{d v}{d t}\) = ?
s = 4 πr2 &
\(\frac{d s}{d t}\) = 4π. 2r. \(\frac{d r}{d t}\)
0.6 = 4π × 3 × 3 × \(\frac{d r}{d t}\)
∴ \(\frac{d r}{d t}=\frac{0.6}{6 \times 4 \pi}=\frac{0.1}{4 \pi} \mathrm{cm} / \mathrm{sec}\)
\(\frac { 1 }{ 40 }\) πcm/sec.
v = \(\frac { 4 }{ 3 }\) πr3
\(\frac{d v}{d t}=\frac{4}{3} \pi \cdot 3 r^{2} \frac{d r}{d t}\)
= 4πr2 \(\frac{d r}{d t}\)
= 4π(3)2 . \(\frac{0.1}{4 \pi}\)
= 0.9 cm3 / sec.

Question 18.
A rod 13 feet long slides with it end A and B as two straight lines at right angles which meet at ‘O’. If A is moved away from O with a uniform speed at 4ft./sec., find the speed of the end B move when A is 5 feet from O.
Answer:
2nd PUC Basic Maths Question Bank Chapter 19 Indefinite Integrals Ex 19.1 - 5
From fig we have
x2 + y2 = 132
y2 = 132 – 152 = 144
y = \(\sqrt{144}\) = 12
Als0
x2 + y2 = 132 ⇒ 2x \(\frac{d x}{d t}\) + 2y\(\frac{d y}{d t}\) = 0
\(5 \times 4=-12 \frac{\mathrm{dy}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=-\frac{20}{12}=\frac{-5}{3}=\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{-5}{3} \mathrm{ft.} / \mathrm{sec}\)

Question 19.
A street lamp is hung 12 feet above a straight horizontal floor on which a man of 5 feet is walking how fast his shadow lengthening when he is walking away from the lamp post at the rate of 175ft./min.
Answer:
2nd PUC Basic Maths Question Bank Chapter 19 Indefinite Integrals Ex 19.1 - 6
Let the shadow be y & the distance from the man walks is x.
Given \(\frac{d x}{d t}\) = 175 ft/min.
From figure we have
\(\frac{12}{5}=\frac{x+y}{y}\) ⇒ 12y = 5x + 5y ⇒ 7y = 5x
⇒ \(\frac{7 \mathrm{dy}}{\mathrm{dt}}=5 \frac{\mathrm{dx}}{\mathrm{dt}}\)
∴ the shadow is lengthening ⇒ \(\frac{d y}{d t}=\frac{5}{7} \times 175\) = 125 ft/ min.

Question 20.
Find a point on the parabola y2 = 4x at which the ordinate increases at twice the rate of the abscissa [Ordinate = y, abscissa = x].
Answer:
Given y2 = 4x diff. w.r.t. x
2y \(\frac{d y}{d x}\) = 4 \(\frac{d x}{d t}\)
Also given \(\frac{d y}{d x}\) = 2. \(\frac{d x}{d t}\) ⇒ 2y .2 \(\frac{d x}{d t}\) = 4. \(\frac{d x}{d t}\)
⇒ y = 1 ⇒ 12 = 4x
⇒ x = \(\frac { 1 }{ 4 }\)
∴ the point on the parabola is (\(\frac { 1 }{ 4 }\), 1 ).

KSEEB Solutions

2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2

Students can Download Maths Chapter 6 Application of Derivatives Ex 6.2 Questions and Answers, Notes Pdf, 2nd PUC Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2

2nd PUC Maths Application of Derivatives NCERT Text Book Questions and Answers Ex 6.2

Question 1.
Find the intervals in which the function f given by f (x) = 3x + 17 is strictly increasing in R
Answer:
f (x) = 3x + 17
f’ (x) = 3 > 0 , ∀ x ∈ R
hence f(x) is strictly increasing on R.

Question 2.
Show that the function given by f (x) = e2x is strightly increasing on R
Answer:
f’ (x) = 2 e2x > 0 ∀ x ∈ R
hence f (x) is strictly increasing on R.

KSEEB Solutions

Question 3.
Show that the function given by f(x) = sin x is
(a) strictly increasing in \((0, \pi / 2)\)
(b) strictly decreasing in \((\pi / 2, \pi)\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.1

Question 4.
Find the intervals in which the function f given by f (x) = 2x2 – 3x is
(a) strictly increasing
(b) strictly decreasing
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.2

Question 5.
Find the intervals in which the function f given by f (x) = 2x2 – 3x2 – 36x +7 is
(a) strictly increasing
(b) strictly decreasing
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.3
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.4

Question 6.
Find the intervals in which the following functions are strictly increasing or decreasing:
(a) x2 + 2x – 5
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.5

KSEEB Solutions

(b) 10 – 6x – 2x2
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.6

(c) -2x3 – 9x2 – 12x + 1
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.7

(d) 6 – 9x – x2
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.8

(e) (x + 1)3 (x -3)3
Answer:
f (x) = (x + 1)3 (x – 3)3
f’ (x) = (x + 1)3 x 3(x – 3)2 + (x – 3)3 x 3 (x + 1)2
= (x + 1)2 (x – 3)2 [3x + 3 + 3x – 9]
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.9

KSEEB Solutions

Question 7.
Show that \(y=\log (1+x)-\frac{2 x}{2+x}, x>-1\) an increasing function of x throughout its domain.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.10

Question 8.
Find the values of x for which y = [x(x – 2)]2 is an increasing function.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.11
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.12

KSEEB Solutions

Question 9.
Prove that \(y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta\) is an a increasing function of θ in \(\left[0, \frac{\pi}{2}\right]\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.13

Question 10.
Prove that the logarithmic function is strictly increasing on (0, ∞).
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.14

Question 11.
Prove that the function f given by f (x) = x2 – x + 1 is neither strictly increasing nor strictly decreasing on (- 1, 1).
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.15

KSEEB Solutions

Question 12.
Which of the following function are strictly decreases on \((0, \pi / 2)\)
(a) cos x
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.16

(b) f(x) = cos 2x
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.17
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.18

(c) cos 3x
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.19

(d) tan x
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.20

Question 13.
On which of the following intervals is the function f given by f (x) = x100 + sin x – 1 strictly decreasing ?
(A) (0,1)
(B) \(\left(\frac{\pi}{2}, \pi\right)\)
(C) \(\left(0, \frac{\pi}{2}\right)\)
(D) None of these
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.21

Question 14.
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on (1, 2).
Answer:
f (x) = x2 + ax + 1
f’ (x) = 2x + a
f (x) is increasing if f’ (x) > 0
2x + a > 0 is x > – a/2
2x > -a – a < 2x ⇒ a > – 2x
since x ∈ (1,2) a > -2
The least value is -2.

KSEEB Solutions

Question 15.
Let I be any interval disjoint from (-1, 1). Prove that the function f given by \(f(x)=x+\frac{1}{x}\) is strictly increasing on I.
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.22

Question 16.
Prove that the function f given by f (x) = log sin x is strictly increasing on
\(\left(0, \frac{\pi}{2}\right)\) and strictly increasing on \(\left(0, \frac{\pi}{2}\right)\)and strictly decreasing on \(\left(\frac{\pi}{2}, \pi\right)\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.23

Question 17.
Prove that the function f given by f (x) = log cos x is strictly decreasing on
\(\left(0, \frac{\pi}{2}\right)\)and strictly increasing on \(\left(\frac{\pi}{2}, \pi\right)\)
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.24

Question 18.
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Answer:
f (x) = x3 – 3x2 + 3x
f'(x) = 3x2 – 6x + 3
= 3 (x – 2)2
f'(x)>0 ∀ x ∈ R
∴ function is continuous on R

KSEEB Solutions

Question 19.
The interval in which y = x2 e-x is increasing is
(A) (- ∞ , ∞)
(B) ( – 2, 0)
(C) (2, ∞)
(D) (0,2).
Answer:
2nd PUC Maths Question Bank Chapter 6 Application of Derivatives Ex 6.2.25

2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1

Students can Download Basic Maths Exercise 5.1 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1

Part – A

2nd PUC Basic Maths Partial Fractions Ex 5.1 Two or Three Marks Questions and Answers

Question 1.
Express the following as a sum of polunomial and proper rational fraction ; \(\frac{x^{2}+x+1}{x^{2}-1}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 1
Question 2.
\(\frac{3 x^{2}-4 x+7}{x+7}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 2

KSEEB Solutions

Question 3.
\(\frac{x^{2}-1}{x^{2}+1}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 3

Question 4.
\(\frac{5 x^{2}}{x^{2}+4 x+3}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 4

KSEEB Solutions

Question 5.
\(\frac{x^{4}}{(x-1)\left(x^{2}+1\right)}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 5

Question 6.
\(\frac{4 x^{3}-2 x^{2}+3 x+1}{2 x^{2}+4 x-1}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 6

Question 7.
\(\frac{4 x^{2}-4 x-1}{2 x-1}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 7

KSEEB Solutions

Question 8.
\(\frac{x^{3}+7}{x^{2}-2 x+1}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 5 Partial Fractions Ex 5.1 - 8

2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2

Students can Download Basic Maths Exercise 4.2 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

Karnataka 2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2

Part – A

2nd PUC Basic Maths Binomial Theorem Ex 4.2 Two Marks Questions and Answers

1. Find
Question (i).
The 5th term in \(\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{8}\)
Answer:
\(\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{8}\) compare with (x + a)n
⇒ x → \(\frac{4 x}{5}\), a → \(\frac{4 x}{5}\) n → 8,
To find th term put r = 4
Tr+ = nCr.xn – r.ar
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 1
T5 = 8C4.(22).2-4
8C4.28-4 = 8C4.24 = 1120

Question (ii).
The 8th term in \(\left(\frac{a}{2}-\frac{3}{b}\right)^{10}\)
Answer:
\(\left(\frac{a}{2}-\frac{3}{b}\right)^{10}\) compare with (x+a)n
⇒ x → \(\frac{a}{5}\), a → \(\frac{2}{b}\) n = 10,
To find 8th term put r = 7
Tr+ = nCr.xn – r.ar
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 2

KSEEB Solutions

Question (iii).
The 6th term in (√x – √y)17
Answer:
Compare (√x – √y)17 with (x + a)n
x → √x a → -√y and n = 17
To find 6th term put r = 5
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 3

Question (iv).
The 7th term in (3x2 – \( \frac{y}{3}\) )9
Answer:
Here x → 3x2 a → \(-\frac{y}{3}\) nn = 9
Put r = 6
T6+1 =9C6 (3x2)9-6. ( \(-\frac{y}{3}\) )6

2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 4

Question (v).
the 10th term in \(\left(\frac{a}{b}-\frac{2 b}{a^{2}}\right)^{12}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 5

Question (vi).
the 11th term in \(\left(x+\frac{1}{\sqrt{x}}\right)^{14}\)
Answer:
Here x = x a = \(\frac{1}{\sqrt{x}}\) ,n = 14 and
put r = 10
T10+1 = 14C10 .x14 – 10 . \(\left(\frac{1}{\sqrt{x}}\right)^{10}\) 14C4.x4 \(\frac{1}{x^{5}}\) = \(\frac{1001}{x}\)

KSEEB Solutions

Part – B

2nd PUC Basic Maths Binomial Theorem Ex 4.2 Three Marks Questions and Answers

Question 2.
Find the middele term in the expansion of

Question (i).
\(\left(x-\frac{1}{2 y}\right)^{10}\)
Answer:
\(\left(x-\frac{1}{2 y}\right)^{10}\)
Here n = even i.e 10 ∴ we have only one middle term  \(\frac{\mathrm{n}}{2}+1=\frac{10}{2}+1\) = 6th term
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 6

Question (ii).
\(\left(\frac{a}{x}+b x\right)^{12}\)
Answer:
\(\left(\frac{a}{x}+b x\right)^{12}\)
Here
n = 12 (even)
∴ We have only one middle term
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 7

Question (iii).
\(\left(\frac{2 a}{3}-\frac{3}{3 a}\right)^{6}\)
Answer:
Here n = 6 (even)
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 8

Question (iv).
\(\left(3 x-\frac{1}{6} x^{3}\right)^{8}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 9

Question (v).
\(\left(\frac{a}{3}+\frac{b}{3}\right)^{8}\)
Answer:
Here n = 8(even)
∴ middle term \frac{\mathrm{n}}{2} + 1 = 4 + 1 = 5th
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 10

KSEEB Solutions

3. Find the middle terms in the expansion of

Question (i).
Find the middle term in the expansion of
\(\left(3 x-\frac{2}{x^{2}}\right)^{15}\)
Answer:
Here n = 15 and odd, so we have two middle terms i.e, \(\frac{n+1}{2}=\frac{15+1}{2}=8^{t h}\) and 8 + 1 = 9th terms to find 8 thterm to find 8 th term pur r = 7
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 11

Question (ii)
\(\left(\frac{x}{2}+\frac{3}{x^{2}}\right)^{19}\)
Answer:
Here n = 19 (odd)∴ We have two middle terms \(\frac{n+1}{2}=\frac{20}{2}\) 10th and 10 + 1 =11th term To find 10th term put r = 9
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 12
Question (iii)
\(\left(2 x^{2}+\frac{1}{\sqrt{x}}\right)^{11}\)
Answer:
Here n = 11 (odd)
∴ the two middle terms are \(\frac{13+1}{2}\) = 7th and 6 + 1 = 7th terms
To find 6th term put r = 5
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 13

Question (iv).
\(\left(\sqrt{x}-\frac{4}{x^{2}}\right)^{11}\)
Answer:
Here n = 11(odd) we have two middle term
i.e,  \( \frac{1+1}{2}\) = 6th and 6 + 1 = 7th terms
To find 6th term put r = 5.
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 14
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 15

Question (v).
\(\left(\sqrt{x}-\frac{3}{x^{2}}\right)^{13}\)
Answer:
\(\left(\sqrt{x}-\frac{3}{x^{2}}\right)^{13}\)
Here n = 13 (odd)
∴ the two middle terms are \(\frac{13+1}{2}\) = 7th and 7 + 1 = 8th terms
To find 7th term put r = 6
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 16

Part – C

2nd PUC Basic Maths Binomial Theorem Ex 4.2 Five Marks Questions and Answers

4.
Question (i).
Find the coefficent of xn in \(\left(x+\frac{2}{x^{2}}\right)^{17}\)
Answer:
Here x = x  a  = \(\frac{2}{x^{2}}\) and  n = 17
Tr+1 = nCr . x n-r.ar
= 17Cr .x 17-r.( \(\frac{2}{x^{2}}\) )r = 17Cr . 2r.x 17-r-2r
= 17Cr 2 r.x 17-3r
To find coefficient of x11 equate the power of x to 11
⇒ 17 – 3r = 11 ⇒ 17 – 11 = 3r
⇒ 3r = 6 ⇒ r = 2
T2+1 = 17C2 . 22.x11
∴ Coefficient of x” is 17C2 .22 = \(\frac{17 \times 16 \times 2}{2 \times 1}\) = 544

Question (ii).
Y3 in \(\left(7 y^{2}-\frac{2}{y}\right)^{12}\)
Answer:
Here x =7y2, a = \(-\frac{2}{y}\) and n = 12
Tr+1 = 12Cr(7Y2)12-r.\(\left(\frac{-2}{y}\right)^{r}\)
= 12Cr.712-r .y24-2r. y-r(-2)r
Tr+1 = 12Cr.712-r.(-2)r.y24-3r
To find the coefficient of y3 equate the power of y ro 3
i.e., 24 – 3r = 3 ⇒ 21 = 3r ⇒ r= 7
∴T7+1 = 12C7 .712-7. (-2)7 y3
= -12C7 .75 27 . y3
∴Coefficient of y3 is -12C7.75.27

Question (iii).
x11 in \(\left(\sqrt{x}-\frac{2}{x}\right)^{17}\)
Answer:
lere, x → √x, a →\(\frac{-2}{x}\) and n = 17
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 17
To find the coefficient of x2 equate the power of x to -11
∴ \(\frac{17-3 r}{2}\) = -11 ⇒ 17 – 3r = – 22
⇒ 17+22 = 3r ⇒ 39 = 3.r ⇒ r = 13
T13+1 = 17C13(-2)13.x-11
Coefficient of x-11 is -17C13.213

Question (iv).
X18 in \(\left(x^{2}-\frac{6}{x}\right)^{15}\)
lere, x → x2, a →\(\frac{-6}{x}\) and r = 15
Tr+1 = 15Cr.(x2)15-r\(\left(\frac{-6}{x}\right)^{r}\)
Tr+1 = 15Cr.x30-2r.(-6)r.x-r
= 15Cr.(-6)r.x30-2r-r
= 15Cr(-6)r.x30-3r.
To find the coefficient of x18,equate the power of x to 18
∴ 30 – 3r = 18 ⇒ 30 – 18 = 3r ⇒ 3r = 12 ⇒ r = 4
T4+1 = 15C4(-6) 4x18
∴ Coefficient of x18 is 15C4. (6)4

KSEEB Solutions

Question (v).
X-2 in \(\left(x+\frac{1}{x^{2}}\right)^{17}\)
Answer:
Here, x → x, a → \(\frac{1}{x^{2}}\) and n = 17
∴ Tr+1 = 17Cr.x17-r\(\left(\frac{1}{x^{2}}\right)^{r}\)
Tr+1 = 17Cr.x17-r-2r
= 17Crx17-3r
To find the coefficient of x-2,equate the power of x to -2
17 – 3r = -2 ⇒ 17 + 2 = 3r ⇒ 3r ⇒ r = \(\frac{19}{3}\)
Since r is a fraction the coefficient of x-2 is 0.

Question (vi).
X5 in \(\left(x+\frac{1}{x^{2}}\right)^{17}\)
Answer:
Here, x → x, a → \(\frac{1}{x^{2}}\) and n = 17
Tr+1 = 17Cr.x17-r\(\left(\frac{1}{x^{2}}\right)^{r}\)
= 17Crx17-3r
To find the coefficient of x5, equate the power of x to 5
∴ 17 – 3r = 5
12 = 23 ⇒ r = 4
T4+1 = T5 = 17C4.x5
∴ the coefficient of x5 is 17C4

Question (vii).
X18 in \(\left(x^{2}+\frac{3 a}{x}\right)^{15}\)
Answer:
Here x → x2 a → \(\frac{3 \mathrm{a}}{\mathrm{x}}\) , n=15
∴ Tr+1 = 15Cr.(x2)15-r \(\left(\frac{3 a}{x}\right)^{r}\)
= 15Crx30-2r.(3a)rxr
=15Cr .3r.ar.x30-3r
To find the coefficient of x18, we get 30 – 3r = 18
12 = 3r ⇒ r =4
∴ T4+1 = 15C4.34.a4.x18
∴ coefficient of x18 is 15C4.(3a)4

5. Find the term independent of x in

Question (i).
\(\left(\frac{4 x^{2}}{3}+\frac{3}{2 x}\right)^{9}\)
Here x → \(\frac{4 x^{2}}{3}\) , a = \(\frac{3}{2 x}\) and n = 9
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 18
To find the term independent of x, equate the power of x to zero.
e., 18 – 3r = 0 ⇒ r = 6
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 19

Question (ii).
\(\left(x^{3}-\frac{3}{x^{2}}\right)^{15}\)
Answer:
Here x → x3, a = \(\frac{-3}{x^{2}}\) and n = 15
Tr+1 = 15Cr.(x3)15-r.\(\left(\frac{-3}{x^{2}}\right)^{r}\)
= 15Cr.x45-r.x-2r (-3)r
= 15Cr.(-3)r.x45-5r
To find the term independent of x we have 45 – 5r = O
:. 45 = 5r ⇒ r = 9
T9+1 = 15C9.(-3)9.x0
T10 = -15C9.(3)9 is the term independent of x.

KSEEB Solutions

Question (iii).
\(\left(\sqrt{x}+\frac{1}{3 x^{2}}\right)^{10}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 20

Question (iv).
\(\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}\)
Answer:
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 21

Question (v).
\(\left(3 x-\frac{2}{x^{2}}\right)^{15}\)
Answer:
Here x → 3x a → \(\frac{-2}{x^{2}}\) and n =15
Tr+1 = 15Cr.(3x)15-r.\(\left(\frac{-2}{x^{2}}\right)^{r}\)
= 15Cr.315-r.(-2)r . x15-r
We have x15-3r. = x0 ⇒ 15 = 3r ⇒ r = 5
T = 15C5.315-5.(-2)5 = -15C5 .310 25
∴ The term independent of x is -15C5.310.25

Question (vi).
\(\left(x^{2}-\frac{2}{x^{3}}\right)^{5}\)
Answer:
Here x → x2 a → \(\frac{-2}{x^{3}}\) = 5r(x2)5 – r . \(\left(\frac{-2}{x^{3}}\right)^{r}\)= 5r.x10-2r.(-2)r
= 5Cr(-2)r.x10-5r
We have 10 – 5r = 0 ⇒ r = 2
T2+1 = T3 = 5C2(-2)2.x0 = 4. \(\frac { 5.4}{ 2.1 }\) = 40
∴  The term independent of x is 40

Question (vii).
\(\left(x-\frac{1}{x^{2}}\right)^{21}\)
Answer:
Here x →x and a → \(\frac{-1}{x^{2}}\) and n= 21
Tr+1 = 21Cr.(x)21-r. \(\left(\frac{-1}{x^{2}}\right)^{r}\)
= 21Cr.x21-3r.(-1)r
We have x0= x21-3r ⇒21 = 3r ⇒ r = 7
∴ T7+1 = T8 = 21C7 (-1)7.x0 = -21C7
∴ The term independent of x is -21C7

Question (viii).
\(\left( \sqrt { 2 } \frac { 2 }{ { x }^{ 2 } } \right)\)<sup>20</sup>
Answer:
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 22

Part – D

2nd PUC Basic Maths Binomial Theorem Ex 4.2 Four Marks Questions and Answers

6. Use binomial theorem to evaluate upt 4 decimals place

Questoin (i)
(102)6
(102)6 = (100 + 2)6
= (100)6 + 6C1(1 0O)5. 2 + 6C2(100)4.22 + 6C3(100)3.236C4(100)2 24 + 6C5.100.25 + 6C626
= 1000000000000 + 120000000000 + 6000000000 + 160000000 + 2400000 + 19200 + 64
= 1,126,162,419,264

Question (ii).
(98)4
Answer:
(98)4 = (100 – 2 )4
= (100) 44C1 (100)3.2 + 4C2(100)2.22 4C3(100).23 + 4C4.24
= 100000000 – 8000000 + 240000 – 3200 + 16
= 92236816

KSEEB Solutions

Question (iii).
(1.0005)4
Answer:
(1.0005)4 = (1 + 0.0005)4
= 14 + 4C1(O.0005) + 4C2(0.0005)2 + 4C3(0.0005)3 + 4C4(0.0005)4
1 + 0.002 + 0.0000015 + …………….
= 1.00200150 ≈ 1.0020

Question (iv).
(0.99)4
Answer:
(0.99)4 = (1- 0.01)4 = 4C0(0.01) – 4C1 (0.01) + 4C2(0.O1)24C3(0.01)3 + 4C4(0.01)4
= 1 – 0.04 + 0.0006 – 0.000004 + 0.00000001
= 0.96059601 ≈ 0.9606

Question 7.
The first three terms in (1 + ax)n where n is a positive integer are 1, 6x, 16x2. Find the vaIue
Answer:
Given . T1 = lin (1 + ax)n; T2 = 6x
nC1 .ax = 6x
nax = 6x
⇒ na = 6 ⇒ a = \(\frac{6}{n}\)
and T3 = 16x2
\(\frac{n(n-1)}{2}\) a2x2 = 16x2

Question 8.
In the expansion of (3 + kx)9 the x2 and x3 are equal. Find k.
Answer:
Given , Tr+1= 9Cr.39-r.(kx) r
= 9Cr.39-r.krxr
Coefficient of x2 ⇒ x2 ⇒ r = 2
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 27
36x 37.k2 x x2
Coefficient of x3 ⇒ x3 = xr⇒ r = 3
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 24
T3+1 = T4 = 93.39-3.k3.x3 = 9C3.36
k3.x3 = 84.36k3.x3
84 x 36k2= 36 x 37 x k2
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 25

KSEEB Solutions

Question 9.
Find the ratio of the coefficient of x4 in the two expansions (1+x)7 and (1+x)10?
Answer:
2nd PUC Basic Maths Question Bank Chapter 4 Binomial Theorem Ex 4.2 - 26

error: Content is protected !!